Effect of Mean on Variance Function Estimation in Nonparametric Regression By
نویسندگان
چکیده
Variance function estimation in nonparametric regression is considered and the minimax rate of convergence is derived. We are particularly interested in the effect of the unknown mean on the estimation of the variance function. Our results indicate that, contrary to the common practice, it is not desirable to base the estimator of the variance function on the residuals from an optimal estimator of the mean when the mean function is not smooth. Instead it is more desirable to use estimators of the mean with minimal bias. On the other hand, when the mean function is very smooth, our numerical results show that the residual-based method performs better, but not substantial better than the first-order-difference-based estimator. In addition our asymptotic results also correct the optimal rate claimed in Hall and Carroll [J. Roy. Statist. Soc. Ser. B 51 (1989) 3–14].
منابع مشابه
Effect of Mean on Variance Funtion Estimation in Nonparametric Regression by
Variance function estimation in nonparametric regression is considered and the minimax rate of convergence is derived. We are particularly interested in the effect of the unknown mean on the estimation of the variance function. Our results indicate that, contrary to the common practice, it is often not desirable to base the estimator of the variance function on the residuals from an optimal est...
متن کاملEffect of Mean on Variance Function Estimation in Nonparametric Regression
Variance function estimation in nonparametric regression is considered and the minimax rate of convergence is derived. We are particularly interested in the effect of the unknown mean on the estimation of the variance function. Our results indicate that, contrary to the common practice, it is often not desirable to base the estimator of the variance function on the residuals from an optimal est...
متن کاملTHE COMPARISON OF TWO METHOD NONPARAMETRIC APPROACH ON SMALL AREA ESTIMATION (CASE: APPROACH WITH KERNEL METHODS AND LOCAL POLYNOMIAL REGRESSION)
Small Area estimation is a technique used to estimate parameters of subpopulations with small sample sizes. Small area estimation is needed in obtaining information on a small area, such as sub-district or village. Generally, in some cases, small area estimation uses parametric modeling. But in fact, a lot of models have no linear relationship between the small area average and the covariat...
متن کاملVariance estimation in nonparametric regression via the difference sequence method (short title: Sequence-based variance estimation)
Consider a Gaussian nonparametric regression problem having both an unknown mean function and unknown variance function. This article presents a class of difference-based kernel estimators for the variance function. Optimal convergence rates that are uniform over broad functional classes and bandwidths are fully characterized, and asymptotic normality is also established. We also show that for ...
متن کاملVariance Estimation in Nonparametric Regression via the Difference Sequence Method by Lawrence
Consider a Gaussian nonparametric regression problem having both an unknown mean function and unknown variance function. This article presents a class of difference-based kernel estimators for the variance function. Optimal convergence rates that are uniform over broad functional classes and bandwidths are fully characterized, and asymptotic normality is also established. We also show that for ...
متن کامل